ORIE 5355

Lecture 9: Algorithmic pricing: capacity, price
differentiation, and competition
Nikhil Garg

Announcements

HW 2 released, due 10/1
Guest lectures next week — show up in person!
Recommendations and NYC’s 311 system

Maximizing revenue =08

&
® 0.6

* Expected revenue at price p: E

' _ 3 .4 |At price p = 6:
[Revenue from each sale] x [Demand at price p] %
p(d(p)) £ ,2|Demand: 1 — F(6)

'% Revenue: Area of rectangle
© 0.0
L 0 2 4 6 8 10

* Revenue maximizing price:
argmax, p(d(p)) Optimal revenue

3.0

2.5

- N
o o

Revenue: p(1 — F(p))

0.5 L
Optimal jprice
1

0 2 4 6 8 10
p

Demand (distribution) estimation

The challenge

* So far, we've talked about calculating
optimal prices if we knew the demand
distribution F(p), or the conditional
demand distributions F, x (p | X = x)

e We don’t know these distributions!
Need to learn them from data

* What does data look like? We never
see valuations, just purchase decisions
at historical prices p

e Assumption: we see decisions at many
prices

Location Income level Offered price

Africa
Europe
America
Europe
Africa
Europe
Europe
Europe

Europe

4.40

4.70

Purchased

False

True

True

True

False

False

True

False

False

Naive approach: Empirical Distribution

* Goal: estimate d(p) = 1 — F(p) for each p in a “reasonable
range” of prices

* Naive approach:
* Bin the historical prices offered

* In each bin, construct estimate d/(a as the fraction of offers in that bin
that were accepted

= # offers accepted

d(p) =

* When estimating I, x (p | X = x), simply do the same thing but
for each set of covariates

offers

Naive method pros and cons

Pros:
. . 2 i —— Num Samples = 100
* Simple to implement i —— Num Samples = 1000
l 08 _
" . . — —— Num Samples = 4000
* “Non-parametric” — no assumptions =
c 0.6
. . ©
* As # of historical samples — o, converge to truth ¢
L o4
Cons: 8
g 0.2
* Wastes data: only use data for that given price Z 00
bin and for that given covariate 1 2 3 4 5 6

* Requires many samples

Exactly the same as naive mean estimation in polling!

Fancier methods: machine learning

* We want to estimate d(p,x) = 1 — F,x (p | X = x)

* In polling module: we replaced mean estimation with “MRP.” More
generally, plug in a machine learning model
* Now, can borrow information across prices and covariates

* We must make a “parametric” assumption for how prices and covariates
relate to purchasing decisions

* One example: Logistic regression

e Target (Y variable) is purchase decision

» Covariates are: price offered, user covariates, interactions between price and
covariates or between covariates

Using embeddings
* We want to estimate d(p,x) = 1 — F,;x (p | X = x)

* Previous slide: Logistic regression
* Target (Y variable) is purchase decision d(p, x)

 Covariates (p, x) are: price offered, user covariates, interactions between price and
covariates or between covariates

* Challenge: what if you have many items you’re selling (separately)? This
wastes information (can’t use models across items)

* Alternative: Use idea from recommendations! Suppose you have user
vector u; and item vector w;. Then, ML model to learn with covariates:
(P, u; - wy)

e Can learn demand for items you haven’t sold before at certain prices!
e (Or completely new items, using KNN approach from recommendations)

* Allows incorporating other information you have about items, that helped you learn
the item vectors

Demand estimation comments

 Demand estimation and forecasting is probably the most important
and difficult challenge in revenue management

* Unlike most machine learning challenges, we need to estimate a
function F (p) [or treat price as a covariate]

* We made a substantial assumption that almost never holds in
practice: that you have historical data at many different prices p

Requires experimentation!

Summary up to now

We want to sell an item
* Only one item
* No capacity constraints
* No competition from other sellers
* No over-time dynamics
Allowed to explicitly give different prices to different users

Then: revenue-maximizing price(s) and demand estimation

Up to now

* Given a demand distribution d(p) = 1 —
F(p), how to calculate optimal prices
arg max [p x d(p)]

* How to estimate demand distributions,
potentially as a function of covariates

Revenue: p(1 — F(p))
o —_ N w N (8)] (o)} ~l

-
o

o
®

o
o

o
~

o

Estimated demand: 1 — I:'(p)
N

=
o

e Combined

—— Num Samples = 100
—— Num Samples = 1000
—— Num Samples = 4000

Plan for rest of today

Many assumptions last time:
* No capacity constraints
* No competition from other sellers
* Only one item
* Allowed to explicitly give different prices to different users
* No over-time dynamics

We'll peel back some of these assumptions today

Capacity constraints and pricing
over time

Setting and examples

You often are trying to sell limited quantities of a good, to many
potential customers over time

* Airline tickets — the airline “wastes” a seat that’s unsold
» Same for concerts, sports, any event with a fixed date
* Clothes that are going out of season/fashion
* Electronics that become obsolete over time

* Any retail setting with inventory constraints

e Often 2 competing effects:
* The items become less valuable over time, or you have a deadline to sell them
* You have less stock over time

Simplified example

* You have 1 copy of the item to sell

* There are 2 time periods, today and tomorrow
* One customer will come in today, a different one tomorrow

* No covariates
* No “discounting” (a dollar tomorrow is as valuable as a dollar today)
* You already have a good estimate of d(p)

What price p; do you set today? What price p, do you set tomorrow?

A couple of observations

What | do today depends on what | can/will do tomorrow.

* | can’t set p; unless | know how | will set p, in each scenario. (whether | sold the item
today, or whether | didn’t).

* | have to “simulate” the future

If I don’t sell the item today, then tomorrow | am solving the same problem that we solved
in class last time:

* Maximizing revenue for a single buyer/without capacity considerations
e =>The price for tomorrow will be same as simple revenue maximizing price

p; = arg max [p X d(p)]

Not true for the price today:
* |f I sell the item today, then | lose out on a potential sale tomorrow
* If I don’t sell the item today, | get another chance tomorrow
=> | should “take a risk” today to try to sell at a higher price

Backward Induction — solve the last day first, go
backwards

Solving the example: “Bellman equation”

* |f | don’t sell today: (happens with probability 1 — d(p;))

 Then my revenue today is 0
* Then the expected revenue tomorrow is: p,d(p-,)

Do | sell today? Total revenue p2*d{p2)

* |f | do sell today: (happens with probability d(p;))
* My revenue today is p;
* Then the expected revenue tomorrow is 0 Totalrevenue

* So, my overall expected revenue is:

d(py)(p; +0) + (1 — d(p1))(0 + pzd(pz))
* p, easy to solve — does not depend on p,

* Given p,, the above revenue function is only a
function of p; => Can optimize p,

Bellman equation generally

Do | sell day 07

Do | sell day 17

Do | sell day 27

Do | sell day 37

Total revenue p1

Total revenue p2

Total revenue p3

Total revenue pd

* You can generalize this idea to selling any number of items

sequentially for T days

 Start from Day T: If you still have an item, do single-shot maximization

e Day T — 1: Given Day T price, you know expected reward if you still
have an item to be sold after Day T — 1. And so, you can calculate

optimal price for Day T — 1.

* Now, you have the expected reward if you still have an item to be sold

afterDay T — 2...

More Bellman equation

* Let V; denote: “Expected profit if | still have an item to
sell on day t”

Vr = pr X d(pr) 2
Vi1 = [pr-1 X d(pr-p)] + (1 — d(PT—1)) Vr

 Above means: “Value today is revenue today if | sell the

Price
S

item today, or tomorrow’s expected revenue if | don’t o m w @
. Time
sell the item today”

* For each t, given I/, ; we can calculate optimal price p;
* Keep iterating until you have prices pg ... pr
* Resulting V; is my expected revenue given these prices

Bellman equations: a general idea

e Constructing a tree to reason about what happens tomorrow, and then
iterating backwards, is a powerful + flexible algorithmic technique:

“dynamic programming”
 Example: What if you have 5 copies of each item?

Let k denote how many copies of the item | have. Then:
Vio = 0O forallt

Vik = rgka d(pt,k)[pt,k + Vt+1,k—1] + (1 - d(pt,k)) Vi+1k

If | sell an item today: Revenue today, plus future revenue from 1 less item
If | don’t sell: Future revenue from same number of items

Competing effects: Now, less capacity over time = prices should go up (but less time
to sell, so prices should go down).

Capacity constraints + over-time pricing in
practice

* Dynamic programs/bellman equations are powerful, but often the
real world is too complicated
* Uncertainty in future capacity
* Future actions of competitors
* Future demand distributions
e “Long time horizons” (T is big)

* In theory, dynamic programming can handle the above. In practice,
hard to know how to calculate future value.

Approximating dynamic programming

* In the recommendations module, we created “score”(or “index”) functions:
e Consider future users, through capacity and avg ratings terms in the score function

* With 1 item: V., ; represents my “opportunity cost” if | sell an item today
that | could have sold tomorrow.

Also interpret as “safety net”: if fail to sell the item today, still earn V. in expectation

* Instead of doing a full Bellman equation, estimate V., ;through some other
means, then plug into the decision problem for today (finding price py)
* Can construct it like we did score functions for recommendations
* AlphaGo to play Go: V;, { is partially estimated via a neural network

Pricing with capacity summary

e Just like in recommendations, have to think about potential future
demand

* Here, potential future demand lets us be “more aggressive” by pricing
higher today

* If | can summarize future revenue (V..) effectively, then | can
optimize today’s prices

* Dynamic programming: start from the end!

* We assumed that customers can’t strategize on when to come — not
true!

Questions?

	Slide 1: ORIE 5355 Lecture 9: Algorithmic pricing: capacity, price differentiation, and competition
	Slide 2: Announcements
	Slide 3: Maximizing revenue
	Slide 4: Demand (distribution) estimation
	Slide 5: The challenge
	Slide 6: Naïve approach: Empirical Distribution
	Slide 7: Naïve method pros and cons
	Slide 8: Fancier methods: machine learning
	Slide 9: Using embeddings
	Slide 10: Demand estimation comments
	Slide 11: Summary up to now
	Slide 12: Up to now
	Slide 13: Plan for rest of today
	Slide 14: Capacity constraints and pricing over time
	Slide 15: Setting and examples
	Slide 16: Simplified example
	Slide 17: A couple of observations
	Slide 18
	Slide 19
	Slide 20: Solving the example: “Bellman equation”
	Slide 21: Bellman equation generally
	Slide 22: More Bellman equation
	Slide 23
	Slide 24: Bellman equations: a general idea
	Slide 25: Capacity constraints + over-time pricing in practice
	Slide 26: Approximating dynamic programming
	Slide 27: Pricing with capacity summary
	Slide 28: Questions?

