ORIE 5355

Lecture 9: Algorithmic pricing: capacity, price
differentiation, and competition
Nikhil Garg



Announcements

HW 2 released, due 10/1
Guest lectures next week — show up in person!
Recommendations and NYC’s 311 system
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Demand (distribution) estimation



The challenge

* So far, we've talked about calculating
optimal prices if we knew the demand
distribution F(p), or the conditional
demand distributions F, x (p | X = x)

e We don’t know these distributions!
Need to learn them from data

* What does data look like? We never
see valuations, just purchase decisions
at historical prices p

e Assumption: we see decisions at many
prices
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Naive approach: Empirical Distribution

* Goal: estimate d(p) = 1 — F(p) for each p in a “reasonable
range” of prices

* Naive approach:
* Bin the historical prices offered

* In each bin, construct estimate d/(a as the fraction of offers in that bin
that were accepted

= # offers accepted

d(p) =

* When estimating I, x (p | X = x), simply do the same thing but
for each set of covariates

# offers



Naive method pros and cons

Pros:
. . 2 i —— Num Samples = 100
* Simple to implement i —— Num Samples = 1000
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bin and for that given covariate 1 2 3 4 5 6

* Requires many samples

Exactly the same as naive mean estimation in polling!



Fancier methods: machine learning

* We want to estimate d(p,x) = 1 — F,x (p | X = x)

* In polling module: we replaced mean estimation with “MRP.” More
generally, plug in a machine learning model
* Now, can borrow information across prices and covariates

* We must make a “parametric” assumption for how prices and covariates
relate to purchasing decisions

* One example: Logistic regression

e Target (Y variable) is purchase decision

» Covariates are: price offered, user covariates, interactions between price and
covariates or between covariates



Using embeddings
* We want to estimate d(p,x) = 1 — F,;x (p | X = x)

* Previous slide: Logistic regression
* Target (Y variable) is purchase decision d(p, x)

 Covariates (p, x) are: price offered, user covariates, interactions between price and
covariates or between covariates

* Challenge: what if you have many items you’re selling (separately)? This
wastes information (can’t use models across items)

* Alternative: Use idea from recommendations! Suppose you have user
vector u; and item vector w;. Then, ML model to learn with covariates:
(P, u; - wy)

e Can learn demand for items you haven’t sold before at certain prices!
e (Or completely new items, using KNN approach from recommendations)

* Allows incorporating other information you have about items, that helped you learn
the item vectors



Demand estimation comments

 Demand estimation and forecasting is probably the most important
and difficult challenge in revenue management

* Unlike most machine learning challenges, we need to estimate a
function F (p) [or treat price as a covariate]

* We made a substantial assumption that almost never holds in
practice: that you have historical data at many different prices p

Requires experimentation!



Summary up to now

We want to sell an item
* Only one item
* No capacity constraints
* No competition from other sellers
* No over-time dynamics
Allowed to explicitly give different prices to different users

Then: revenue-maximizing price(s) and demand estimation



Up to now

* Given a demand distribution d(p) = 1 —
F(p), how to calculate optimal prices
arg max [p x d(p)]

* How to estimate demand distributions,
potentially as a function of covariates
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Plan for rest of today

Many assumptions last time:
* No capacity constraints
* No competition from other sellers
* Only one item
* Allowed to explicitly give different prices to different users
* No over-time dynamics

We'll peel back some of these assumptions today



Capacity constraints and pricing
over time




Setting and examples

You often are trying to sell limited quantities of a good, to many
potential customers over time

* Airline tickets — the airline “wastes” a seat that’s unsold
» Same for concerts, sports, any event with a fixed date
* Clothes that are going out of season/fashion
* Electronics that become obsolete over time

* Any retail setting with inventory constraints

e Often 2 competing effects:
* The items become less valuable over time, or you have a deadline to sell them
* You have less stock over time



Simplified example

* You have 1 copy of the item to sell

* There are 2 time periods, today and tomorrow
* One customer will come in today, a different one tomorrow

* No covariates
* No “discounting” (a dollar tomorrow is as valuable as a dollar today)
* You already have a good estimate of d(p)

What price p; do you set today? What price p, do you set tomorrow?



A couple of observations

What | do today depends on what | can/will do tomorrow.

* | can’t set p; unless | know how | will set p, in each scenario. (whether | sold the item
today, or whether | didn’t).

* | have to “simulate” the future

If I don’t sell the item today, then tomorrow | am solving the same problem that we solved
in class last time:

* Maximizing revenue for a single buyer/without capacity considerations
e =>The price for tomorrow will be same as simple revenue maximizing price

p; = arg max [p X d(p)]

Not true for the price today:
* |f I sell the item today, then | lose out on a potential sale tomorrow
* If I don’t sell the item today, | get another chance tomorrow
=> | should “take a risk” today to try to sell at a higher price



Backward Induction — solve the last day first, go
backwards






Solving the example: “Bellman equation”

* |f | don’t sell today: (happens with probability 1 — d(p;))

 Then my revenue today is 0
* Then the expected revenue tomorrow is: p,d(p-,)

Do | sell today? Total revenue p2*d{p2)

* |f | do sell today: (happens with probability d(p;))
* My revenue today is p;
* Then the expected revenue tomorrow is 0 Totalrevenue

* So, my overall expected revenue is:

d(py)(p; +0) + (1 — d(p1))(0 + pzd(pz))
* p, easy to solve — does not depend on p,

* Given p,, the above revenue function is only a
function of p; => Can optimize p,



Bellman equation generally

Do | sell day 07

Do | sell day 17

Do | sell day 27

Do | sell day 37

Total revenue p1

Total revenue p2

Total revenue p3

Total revenue pd

* You can generalize this idea to selling any number of items

sequentially for T days

 Start from Day T: If you still have an item, do single-shot maximization

e Day T — 1: Given Day T price, you know expected reward if you still
have an item to be sold after Day T — 1. And so, you can calculate

optimal price for Day T — 1.

* Now, you have the expected reward if you still have an item to be sold

afterDay T — 2...




More Bellman equation

* Let V; denote: “Expected profit if | still have an item to
sell on day t”

Vr = pr X d(pr) 2
Vi1 = [pr-1 X d(pr-p)] + (1 — d(PT—1)) Vr

 Above means: “Value today is revenue today if | sell the

Price
S

item today, or tomorrow’s expected revenue if | don’t o m w @
. Time
sell the item today”

* For each t, given I/, ; we can calculate optimal price p;
* Keep iterating until you have prices pg ... pr
* Resulting V; is my expected revenue given these prices






Bellman equations: a general idea

e Constructing a tree to reason about what happens tomorrow, and then
iterating backwards, is a powerful + flexible algorithmic technique:

“dynamic programming”
 Example: What if you have 5 copies of each item?

Let k denote how many copies of the item | have. Then:
Vio = 0O forallt

Vik = rgka d(pt,k)[pt,k + Vt+1,k—1] + (1 - d(pt,k)) Vi+1k

If | sell an item today: Revenue today, plus future revenue from 1 less item
If | don’t sell: Future revenue from same number of items

Competing effects: Now, less capacity over time = prices should go up (but less time
to sell, so prices should go down).



Capacity constraints + over-time pricing in
practice

* Dynamic programs/bellman equations are powerful, but often the
real world is too complicated
* Uncertainty in future capacity
* Future actions of competitors
* Future demand distributions
e “Long time horizons” (T is big)

* In theory, dynamic programming can handle the above. In practice,
hard to know how to calculate future value.



Approximating dynamic programming

* In the recommendations module, we created “score”(or “index”) functions:
e Consider future users, through capacity and avg ratings terms in the score function

* With 1 item: V., ; represents my “opportunity cost” if | sell an item today
that | could have sold tomorrow.

Also interpret as “safety net”: if fail to sell the item today, still earn V. in expectation

* Instead of doing a full Bellman equation, estimate V., ;through some other
means, then plug into the decision problem for today (finding price py)
* Can construct it like we did score functions for recommendations
* AlphaGo to play Go: V;, { is partially estimated via a neural network



Pricing with capacity summary

e Just like in recommendations, have to think about potential future
demand

* Here, potential future demand lets us be “more aggressive” by pricing
higher today

* If | can summarize future revenue (V.. ) effectively, then | can
optimize today’s prices

* Dynamic programming: start from the end!

* We assumed that customers can’t strategize on when to come — not
true!



Questions?
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